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m oon circulation and rainfall
d e the present climate and to
p ulation are simulated with
r

lling groups within Europe.
T in climate models, and on
a e monsoon studies carried
o ne issue of ``Euroabstracts'',
w s links to other sites, can be
f ag/Monsoon/index.html. A
c n also be obtained from the
S

s between the participating
m rent climate models, and a
r

ncluding a statistical cloud
National de Recherches

lanck Institute (MPI) for
nd surface temperatures, a
e precipitation, organized
se in gravity wave drag and

ared with version CY13R4
s well as increased vertical

), Paris, France.

parison Project (AMIP-II;
G 5, prepared, using available
i PCMDI). The run with the
E ld values). In the run with
t the preceding years (1980,
1 ve been omitted from the
c e interannual variability of
u han that of using relatively
onsoon rainfall, it is essential that GCMs are able to produce a reasonable simulation of both the mean mons
istribution, and its intraseasonal and interannual variability. In addition, such GCMs are used both to simulat
redict future global and regional climate change, so it is essential that the main features of the general circ
easonable accuracy.

The SHIVA project was initiated in 1996 and ran for 3 years, involving scientists from all of the major mode
he project focused on documenting the observed behaviour of the monsoon, on improving its simulation
ssessing the predictability of the system and the factors that might determine that predictability. Details of th
ut during SHIVA can be found in the SHIVA Final Report (Slingo et al., 1999; a review of this book is in the Ju
hich can be found at http://www.cordis.lu/euroabstracts). Additional information about the monsoon, as well a

ound at the SHIVA web site at http://www.met.rdg.ac.uk/shiva/shiva.html and at http://www.met.reading.ac.uk/c
omprehensive description of the mean monsoon and its variability was compiled in the SHIVA Atlas, which ca
HIVA web site.

A number of different GCMs were used in the project. In this paper, we compare the monsoon climatologie
odels, in order to provide both an indication of the state of the representation of the Asian monsoon in cur

eference point for individual studies using each of the different models. The ®ve GCMs used are:

(a) climate version HadAM3 (Pope et al., 2000) of The Met. Of®ce (U.K.) Uni®ed Model;
(b) the ARPEGE-Climat model Cycle 18c (an updated version of that used by Stephenson et al. (1998), i

scheme (Ricard and Royer, 1993) and a semi-Lagrangian advection scheme) from the Centre
Meteorologiques (CNRM) at Meteo-France;

(c) the ECHAM 4.5 model, an updated version of ECHAM4 (Roeckner et al., 1996) from the Max P
Meteorology, Hamburg, Germany. Changes from ECHAM4 include an implicit treatment of the la
reduction in the low wind speed correction for unstable conditions over sea, changes to convectiv
entrainment and CAPE closure time scale, an increase in cloud droplet number concentration, an increa
an increase in the minimum relative humidity for condensation at upper levels;

(d) the European Center for Medium-range Weather Forecasting (ECMWF) model version CY18R6; comp
used by Ferranti et al., (1999), CY18R6 includes a 2-time-level semi-Lagrangian advection scheme a
resolution in the boundary layer and stratosphere; and

(e) the LMD6 model (Polcher and Laval, 1994) from the Laboratoire de Meteorologie Dynamique (LMD

For four of the models, 17-year runs were carried out as part of the second Atmospheric Model Intercom
ates, 1992). These were forced with observed sea surface temperatures (SSTs) and sea ice data for 1979 to 199

n-situ, climatological, and satellite data, by the Program for Climate Model Diagnosis and Intercomparison (
CMWF model was continued on to 1998 using SSTs from the ECMWF operational analyses (based on Reyno

he ARPEGE model, the SSTs used in three particular years (1981, 1984 and 1991) were erroneously those of
983 and 1990). Although this will have little effect on the climatology of the model, these three years ha
alculation of interannual variability in monsoon onset date in section 6 (there may still be some effect on th
sing erroneous initial conditions in 1982, 1985 and 1992, although it is likely that this will have less effect t
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Table 1. Summary of SHIVA models

UKMO LMD MPI CNRM ECMWF

Model version HadAM3 LMD6 ECHAM4.5 ARPEGE Cycle 18c CY18R6

Experiment years 1979±1995 1979±1988 1979±1995 1979±1995 1979±1998

Horizontal

resolution

Gridpoint 3.75 � 2.5

deg

Gridpoint

3.75 � sin(lat) deg

Spectral T42. Physics

on 2.8 � 2.8 deg

Gaussian grid

Spectral T63. Physics

on 2.8 � 2.8 deg

Gaussian grid

Spectral T63. Physics

on 2 � 2 deg grid

Vertical resolution 19 levels 15 levels 19 levels 45 levels 60 levels

Numerical scheme Conservative split-

explicit

timestep � 30 mins

Leap-frog scheme,

timestep � 6 mins,

physics

timestep � 24 mins

Semi-implicit,

timestep � 24 mins

Semi-implicit,

timestep � 30 mins

Semi-implicit,

timestep � 60 mins

Advection 4th order Eulerian Semi-Lagrangian for

humidity variables

Semi-Lagrangian Semi-Lagrangian

Radiation General 2-stream

scheme (Edwards and

Slingo, 1996). Separate

ice and water; aerosols

SW: Fouquart and

Bonnel, 1980; LW:

Morcrette et al., 1986.

SW: Fouquart and

Bonnel, 1980; LW:

Morcrette et al., 1986

Morcrette scheme

(Morcrette, 1990)

Morcrette scheme

(Morcrette, 1990)

Clouds Statistical; diagnose

cloud water, ice and

fraction using RH
(Smith, 1990)

Prognostic liquid,

water and ice.

Statistical
condensation

Sunqvist-type,

prognostic LWC,

diagnosed cloud
fraction

Statistical cloud

scheme (Ricard and

Royer, 1993)

Prognostic cloud

water, ice and fraction

(Tiedtke, 1993)

Convection Mass-¯ux, stability-

dependent closure

(Gregory and

Rowntree, 1990)

Mass-¯ux; modi®ed

Kuo-type (moisture

convergence and

stability closure)

Mass-¯ux, CAPE-

based closure

Mass-¯ux; Kuo-type

(Bougeault, 1985)

Mass-¯ux (Tiedtke,

1993)

Boundary layer Stability-dependent
with diagnosed mixing

length (Smith, 1990)

Stability-dependent
with diagnosed mixing

length

1.5 order closure. Eddy
diffusivity a function

of prognostic TKE

Stability-dependent
with diagnosed mixing

length

K-pro®le formulation
for dry mixed layer,

separate entrainment

(Beljaars and Viterbo,

1998)

Surface 4 layers. Freeze and

melt soil water;

interactive canopy
resistance (MOSES,

Cox et al., 1999)

7 soil layers, 7

vegetation types. 2

moisture reservoirs
(Ducoudre et al., 1993)

5-layer model. 2

moisture reservoirs

(Roeckner et al., 1992)

4-layer soil model. 3

moisture reservoirs

(Noilhan and Planton,
1989)

4-layer soil model

(Viterbo and Beljaars,

1995)



Figure 1. Seasonal (MJJAS) mean climatology of 850 hPa horizontal wind (m/s) for the ®ve SHIVA models and ERA.



Figure 2. Seasonal (MJJAS) mean climatology of 200 hPa horizontal wind (m/s) for the ®ve SHIVA models and ERA.



Figure 3. Seasonal (MJJAS) mean precipitation climatology (mm/day) for the ®ve SHIVA models and ERA.
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o

ndonesia. Also in LMD6, the Tibetan anticyclone is further northwest than in the other models or ERA; this

asterly ¯ow over India at 200 hPa. Changing the height of the Tibetan Plateau does not appear to alleviate

The 850 hPa ¯ow is also slightly too strong (by up to around 2 m/s) in ARPEGE (except over the Arab

CMWF, but in the former two models the 200 hPa ¯ow is too weak by up to 4 m/s. With a previous versio

limat, described by Stephenson et al., (1998), the monsoon circulation (at T63) was slightly too strong at b

lthough the extension of the westerly ¯ow across southeast Asia to the Philippines at 850 hPa was not pres

onsoon circulation in the current model version is thought to be associated with inclusion of the semi-La

M. Deque, personal communication). The extension of the westerly ¯ow across southeast Asia may be a

recipitation in this region (see below).

The errors in the monsoon circulation in ECHAM4.5 are much smaller than in the previous version, ECH

irculation was too weak at both lower and upper levels. One of the main contributors to this is the inclusion of

and surface temperatures, in which temperatures in the atmosphere and soil are calculated simultaneous

onserved (Slingo et al., 1999, section 1.2 of Annex D). Changes to the convection and condensation schem

hrough redistribution of the convective precipitation (see below).

It should be noted that Annamalai et al., (1999) showed differences in the strength of the Somali jet between

eanalyses of up to 5 m/s, as well as differences in the pattern of ¯ow over the Indian peninsula and over the Ind

quatorial easterly ¯ow at 200 hPa was systematically stronger in NCEP/NCAR than in ERA. Since these regio

lear which of these is closer to reality. However, HadAM3 and LMD still overestimate the strength of the lo

CHAM4.5 and ECMWF underestimate the strength of the upper level ¯ow compared with both reanalyses.

The models exhibit differences in precipitation which are in broad agreement with the differences in circulatio

f the strength of the monsoon circulation is associated with errors in moisture transport into the region,

imulating precipitation. For example, the amount of precipitation is overestimated in HadAM3 and LMD6. T

arge rainfall amounts over East Asia and the western Paci®c, which are associated with the increased 850 hPa ¯

ncreased upper level ¯ow to the south in Figure 2(d). In HadAM3, the rainfall over western India is concent

odel does represent the rain shadow region seen in CMAP/O over southeast India. Martin and Soma

oncentration of precipitation over Gujarat in HadAM3 is associated with the inclusion of CMT, through inc

egion resulting from changes in the balance of momentum mixing between the convection and boundary la

Rainfall in the Indian region is also rather overestimated by ECHAM4.5, although by a smaller amount t

hadow region of southeast India is also represented in this model. Over the western Paci®c, the rain band in E

han in the observations, and the amount of rainfall is slightly underestimated. In ECHAM4, precipitation

nderestimated considerably, whilst being excessive over the Indian Ocean and South China Sea. A reducti

orrection for unstable conditions over sea made in ECHAM4.5 reduced precipitation over the equatorial Ind

ver India, through a reduction in evaporation over the sea (Slingo et al., 1999, section 1.2 of Annex D). Change

recipitation in land-based convection and reductions in the organized entrainment into convection tend to

he land areas, with a compensating reduction over the sea. Finally, the alterations to the condensation scheme le

ver land through changes to the radiative heating of the surface.
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Overall, rainfall amounts in the Indian region are overestimated in the ECMWF model. This contrasts wi
odel (without the 2-time-level semi-Lagrangian advection and at lower vertical resolution), in which precipi
as underestimated. However, CY18R6 underestimates precipitation signi®cantly over the Bay of Bengal an

imilar manner to CY13R4. This may be associated with the lack of convergence in this region in the 850 h
ontrast, ARPEGE underestimates rainfall in the Indian region and over the eastern part of the equatorial India
lightly overestimating the rainfall over the western Paci®c. This is in agreement with the rather weak Somali je
he extension of westerly winds into the western Paci®c in this version of the model. As shown in Slingo et al.,
), the inclusion of the statistical cloud scheme affects convective activity indirectly through its interaction wi

ransfer. It was found to result in reduced precipitation over much of the Indian region and increased precipitati
hen the semi-Lagrangian advection scheme was also included, these changes were enhanced as the circulati

ainfall over the western part of the equatorial Indian Ocean was increased.
LMD6, ARPEGE and ECMWF also appear to exhibit erroneous precipitation over the southern slopes of th

ommon problem in GCMs (Gadgil and Sajani, 1998). Lack of observational data in this region makes this r
tephenson et al., (1998) noted that the CMAP/O dataset may underestimate the amount of precipitation in this
orrected over orography. However, Stephenson et al., (1998) also showed that using low resolution (T21
esolution run of ARPEGE-Climat version 2 reduced the excessive rainfall over the southern slopes of the Ti
educing the height of the Tibetan Plateau by 50% in LMD6 also reduced the excessive rainfall in this region, sh

t was more evenly spread over India but still rather excessive over southeast Asia (Slingo et al., 1999, section 3.2
tudies suggest that the treatment of orography in this region and its effects on the atmosphere are crucial to

All of the models, and particularly LMD6, underestimate rainfall amounts over the equatorial Indian Ocean,
roduce more rainfall in this region, the maximum in precipitation is further west than in CMAP/O.

In order to make a quantitative comparison between the models' representation of the Asian monsoon clima
nd root-mean-square (RMS) errors in the zonal winds (U) at 850 hPa and 200 hPa and the precipitation (PPN
ecause of the regional nature of the monsoon precipitation, the correlations and RMS errors have been calcul
ell as for the region as a whole. The latitude/longitude limits of all of the regions used are indicated in Tab
The pattern correlations are high for the zonal winds at both upper and lower levels, which is to be expect

irculation is a major component of the general atmospheric circulation. Poorer correlation of the 200 hPa z
odels in which the location of the easterly jet core differs substantially from that in the reanalyses (e.g. LMD6

he incorrect strength of the monsoon circulation, even in those models for which the pattern correlations are
roblems with both the strength and position of the upper and lower level jets are seen in LMD6 and ARPE

The pattern correlations for precipitation are lower than those for the zonal winds because of its region
recipitation distribution in some of the models, discussed above, are re¯ected in the correlations, with LMD
howing lower correlations than the other three models. The RMS errors are similar for all of the models except
verestimate the amount of precipitation over much of the region east of 908E in Figure 3. The correlations an
ubregions give more detail as to where the main problems are, with LMD6 showing particular problems in th
RPEGE, LMD6 and ECMWF in the Bay of Bengal region and ARPEGE, LMD6 and ECMWF in the East Asian

mall subregions in this analysis is a tough test of the model simulations, but is useful in highlighting region



4. SEASONAL EVOLUTION

Timeseries of monthly mean winds and precipitation, averaged over dif e shown in Figure 4. These

allow the representation of the monsoon seasonal evolution in the differe e increase in westerly winds

at 850 hPa and easterly winds at 200 hPa associated with the onset of the evident in June, coinciding
with a sharp increase in the precipitation in CMAP/O. The main mon August, with the monsoon

retreating in September.

The models all reproduce the basic monsoon seasonal variation, alth eat, and the maxima in the

winds and precipitation during the established phase, differ between the D6 and HadAM3 persists
through the season, and is associated with early monsoon onset (as fa erages) and, in the case of

LMD6, a late retreat (except over India). ECHAM4.5 shows reasonable xcept in overestimating the
precipitation over India during the established phase of the monsoon. T the circulation is generally

weaker than in ERA and the monsoon retreat shows a tendency to be e set is late and the retreat is

Table 2. Pattern correlations and RMS errors for the ®ve SHIVA models with re CMAP/O ( for precipitation)

HadAM3 ARPEGE 6 ECMWF

U(850) m/s 40±1208E 158S±208N
Corr. 0.964 0.967 0.978
RMSE 3.562 2.571 1.799

U(200) m/s 40-120E 15S-20N

Corr. 0.902 0.842 0.828

RMSE 3.361 5.511 3.754

PPN (mm/day) 60-150E 5-30N

Corr. 0.674 0.624 0.493

RMSE 2.850 2.817 2.826

PPN India 75-85E 5-30N

Corr. 0.527 0.610 0.831

RMSE 3.306 2.477 2.068

PPN B. Bengal 85-100E 10-30N

Corr. 0.702 ÿ0.490 0.208

RMSE 5.139 4.941 3.390

PPN E. Asia 100-115E 5-30N

Corr. 0.441 0.287 0.334

RMSE 2.592 2.625 2.704
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Figure 4. Timeseries of monthly mean winds and precipitation for the ®ve SHIVA models and ERA.



early, particularly over India and the Bay of Bengal. The precipitation over these region ere ghout the season, although
the circulation is slightly overestimated at low levels. This may indicate convection w no .

5. DEVELOPMENT OF THE MON N

The Asian summer monsoon develops in response to large-scale temperature gradient gro al spring as a result of solar
heating of the Asian continent and warming of the northern Indian Ocean. Figure sho ical monthly mean surface
temperatures in May, June and July, zonally averaged between 608E and 908E, for SH nd ERA. The SSTs are the

Figure 5. Caption on next page.
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imposed values. Note that the surface temperatures for HadAM3, ECHAM4.5, LMD6, EC in temperatures whilst that
for ARPEGE is the temperature in the ®rst soil layer (with the nature of the soil (e.g. r) taken into account). In
addition, computation of skin temperature varies between different land surface scheme in comparing these values
quantitatively. However, the evolution of the land±sea temperature contrast as the m be compared between the
models.

Both the SST and the land surface temperature are generally greatest in May, but the no e gradient is also greatest at
this time in the models and in ERA. Once the monsoon is established (July), the land su moisture increases, and the

Figure 5. Zonal mean (60±908E) surface temperature (a±f) and 700 hPa relative humidity (g±k) een) and July (blue) from the

®ve SHIVA models and ERA.
MWF and ERA are sk
vegetation, snow cove
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onsoon develops can

rth-south temperatur
rface cools as the soil

in May (red), June (gr
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Figure 6. Average (a±f) and standard deviation (g±l) of monsoon onset date (days from 1 May) in the ®ve SHIVA models and ERA. The data have been

interpolated onto the grid of the UKMO model.
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